Per la rubrica “Antropocene” proponiamo un articolo liberamente tradotto da Medium che presenta vantaggi e questioni di un’opzione energetica poco considerata, ma dall’altissimo potenziale, per contribuire all’interruzione delle emissioni di carbonio.
Da un po’ di tempo “rinnovabile” è diventato sinonimo di “libero dal carbonio”. Ma il solare e l’eolico non sono gli unici mezzi per produrre energia senza emissioni di CO2. Le energie rinnovabili sono importanti e dovrebbero sicuramente far parte del mix energetico di ogni paese. Tuttavia, non dovrebbero essere al centro dell’intero futuro dell’energia condivisa. Le energie rinnovabili sono intermittenti e richiedono un’enorme stoccaggio energetico nonché enormi tratti di terra o responsabilità del consumatore per installazioni sulle proprie proprietà. Fa eccezione l’idroelettrico, che può essere la migliore forma complessiva di energia grazie al suo potere affidabile e privo di carbonio. Eppure anche l’idroelettrico ha i suoi lati negativi, come gli impatti dannosi sugli ecosistemi locali e le limitazioni geografiche. La linea di fondo è che tutti i sistemi energetici dovrebbero avere un ruolo nel mix energetico: eolico, solare, idroelettrico e, nonostante molte discussioni, nucleare.
L’energia nucleare ha risparmiato milioni di tonnellate di CO2 dall’emissione nell’atmosfera per quasi i tre quarti di secolo. Ma ciò ha comportato molti gravi inconvenienti, come i rifiuti radioattivi e il potenziale di fusione del nocciolo o altri incidenti gravi. Chiaramente, questa non è una forma ideale di energia per il futuro, anche se può aiutare a ridurre drasticamente la nostra produzione di carbonio. Aumentare la produzione nucleare significherebbe aumentare la quantità di rifiuti e aumentare le possibilità di ulteriori incidenti simili a Fukushima o Chernobyl. E se ci fosse un modo per sfruttare l’elettricità priva di carbonio creata dalla scissione degli atomi senza sprechi, fusione del nocciolo, costi elevati e torri di raffreddamento dall’aspetto inquietante?
Tale opzione è possibile, sebbene non sia operativa in nessuna parte del mondo. Questo perché finora non si è dimostrata commercialmente praticabile su nessuna scala – il che, combinato con la paura della parola “nucleare” e la convinzione quasi dogmatica che l’unica forma di energia priva di carbonio sia l’energia rinnovabile, ne ha impedito l’implementazione.
Dovremmo davvero esplorare se questa forma di energia può aiutarci con il nostro crescente problema del carbonio atmosferico.
Perché i piccoli reattori modulari sono l’ideale
Dimentica le centrali elettriche deprimenti, costose e contestate dei tipici ritratti dell’energia nucleare. Questi modelli più vecchi e obsoleti non sono la strada da percorrere. Il futuro dell’energia pulita può essere molto più piccolo e meno minaccioso. E potrebbe includere molti piccoli reattori modulari (SMR), in particolare i reattori al fluoruro di torio liquido (LFTR).
Il torio è il numero 90 nella tavola periodica degli elementi, due posti dietro l’uranio. È una sostanza debolmente radioattiva che è molto più abbondante dell’uranio presente in natura – e ci sono numerosi vantaggi nell’usarlo come combustibile rispetto a quest’ultimo. No, non è rinnovabile, ma una pallina da golf di torio potrebbe, in teoria, alimentare una piccola città per decenni. E il fatto che non sia rinnovabile non dovrebbe essere un aspetto negativo. Le energie rinnovabili, ad eccezione dell’idroelettrico, sono intermittenti; gli LFTR fornirebbero energia di base alla rete per il backup di energia solare ed eolica. Diventa ancora più essenziale avere una nuova forma scalabile di energia priva di carbonio se seguiamo il percorso di elettrificare tutto per ridurre l’uso di combustibili fossili. Questo perché le reti elettriche dovranno espandersi triplicando o quadruplicando la loro attuale capacità (o più) per far fronte all’afflusso di pratiche dipendenti dall’elettricità, come gli autoveicoli e la produzione industriale. Gli LFTR sono privi di emissioni di carbonio, quasi privi di rifiuti, affidabili, efficienti e teoricamente sicuri. Sameer Surampalli fa un ottimo lavoro nel descrivere alcuni dei dettagli più tecnici della potenza del torio:
Una disposizione tipica per un moderno reattore a base di torio ricorda un reattore convenzionale, sebbene con notevoli differenze. Innanzitutto, il torio-232 e l’uranio-233 vengono aggiunti ai sali di fluoruro nel nocciolo del reattore. Quando si verifica la fissione, il calore e i neutroni vengono rilasciati dal nucleo e assorbiti dal sale circostante. Questo crea un isotopo uranio-233, poiché il torio-232 assume un neutrone aggiuntivo. Il sale si scioglie in uno stato fuso, che fa funzionare uno scambiatore di calore, riscaldando un gas inerte come l’elio, che spinge una turbina a generare elettricità. Il sale irradiato scorre in un impianto di post-elaborazione, che separa l’uranio dal sale. L’uranio viene quindi rimandato al nucleo per riavviare il processo di fissione.
Ci sarebbero anche vantaggi in termini di costi che entrerebbero in gioco se venissero commissionati reattori al torio, con LFTR che necessitavano di meno costi per funzionare rispetto ai reattori a combustibile solido (una volta operativi, i sali costerebbero all’incirca $ 150 / kg e il torio costerebbe circa $ 30 / kg) . Inoltre lo stesso Surampalli afferma:
Se il torio diventa popolare, questo costo non farà che diminuire poiché il torio è ampiamente disponibile ovunque nella crosta terrestre. Il torio si trova in una concentrazione oltre 500 volte maggiore dell’uranio fissile-235. Il torio, storicamente è stato messo da parte come sottoprodotto dell’estrazione di metalli in terre rare. Con l’estrazione, si poteva ottenere abbastanza torio per alimentare LFTR per migliaia di anni. Per un impianto da 1 GW, il costo del materiale per il carburante sarebbe di circa $ 5 milioni. Poiché gli LFTR usano il torio allo stato naturale, non sono richiesti costosi processi di arricchimento del combustibile o fabbricazione di barre di combustibile solido, il che significa che i costi del combustibile sono significativamente inferiori rispetto a un reattore a combustibile solido comparabile. In un reattore perfettamente funzionante, il ritrattamento post-chimico consentirebbe a un LFTR di consumare in modo efficiente quasi tutto il suo combustibile, lasciando pochi rifiuti o sottoprodotti a differenza di un reattore convenzionale.
Questi benefici non dovrebbero essere presi alla leggera. Se siamo seriamente intenzionati a fermare le emissioni di CO2 – cosa che dovremmo tutti sostenere – allora questa tecnologia dovrebbe avere la giusta possibilità di dimostrare se è in grado di fornire energia di base alle reti elettriche in tutto il mondo.
Perché il nucleare SMR è più sicuro del nucleare tradizionale
L’energia nucleare LFTR piccola e modulare affronta quasi tutti i problemi associati all’energia nucleare tradizionale. Ci sono meno rifiuti, funziona a pressione atmosferica e utilizza sale liquido anziché refrigeranti ad alta pressione. Ha anche un affidabile sistema di spegnimento passivo.
Gli LFTR generano una quantità significativamente inferiore di rifiuti radioattivi rispetto ai reattori di terza generazione e possono riutilizzare l’uranio separato, rendendo il reattore SMR quasi autosufficiente una volta avviato. A differenza dei tradizionali sistemi nucleari ad alta pressione, gli LFTR sono progettati per funzionare come sistemi a bassa pressione, che sono molto più stabili, e i sali di fluoro hanno punti di ebollizione molto alti, rendendoli resistenti a forti o improvvisi aumenti di pressione.
La combinazione di un sistema a bassa pressione e un alto punto di ebollizione limita notevolmente la possibilità di un’esplosione nell’edificio contenitore. Gli LFTR non richiedono un raffreddamento massiccio: possono essere posizionati ovunque e possono essere raffreddati ad aria, motivo per cui sono considerati piccoli reattori modulari. Questi particolari SMR sono intrinsecamente sicuri: se il nucleo dovesse surriscaldarsi, un sistema di spegnimento passivo abilitato per gravità manderebbe il sale riscaldato e irradiato in una camera di contenimento sotterranea e spegnerebbe il reattore. E se c’è una cosa su cui si può fare affidamento in questo universo, è la gravità.
Gli aspetti negativi
L’energia a base di torio non è priva di difetti. Le principali lamentele degli attivisti anti-nucleari e degli scienziati scettici nel merito sono che non sono testati, non sono praticabili e rappresentano semplicemente una distrazione per lo status quo dell’attuale industria nucleare. Queste affermazioni non sono prive di fondamento – il fatto che finora non sia stato testato, rende giustificabile la critica, e sta effettivamente distogliendo l’attenzione sulla situazione nucleare corrente, intenzionalmente o meno. E le affermazioni sulla sicurezza, sebbene solide in teoria, devono ancora essere testate in tutti gli scenari del mondo reale. A tal proposito Surampalli, un sostenitore o SMR di torio, scrive:
Gli LFTR presentano alcune sfide. Vi sono delle lacune significative nella ricerca e nei materiali necessari per gli LFTR. Le strutture chimiche di post-trattamento, che separerebbero l’uranio dai sali fusi per il riutilizzo, non sono ancora state costruite in modo fattibile. Ogni reattore, per essere avviato, richiederebbe dell’uranio altamente arricchito (come l’uranio-235) che è molto costoso.
Egli inoltre afferma che “qualsiasi residuo radioattivo non può essere utilizzato per creare armi “, ma questa è un’affermazione dibattuta. Alcuni scienziati sostengono che l’U-233 creato nei reattori al torio potrebbe essere usato per creare armi atomiche se estratto nel modo giusto. Altri affermano che ciò non è possibile. Ad ogni modo, sarebbe una buona idea proteggere gli LFTR da interferenze esterne, indipendentemente dalle loro capacità di proliferazione. Un articolo del Guardian di quasi un decennio fa delinea il motivo per cui il torio non è così “verde” come sembra, e alcuni dei punti in esso contenuti sono corretti.
E adesso?
Il potere del torio non è un “proiettile d’argento”. Non esiste una cura completa che può essere attuata e risolvere il problema climatico in un giorno. Pur se il potere della fusione nucleare dovesse diventare una realtà (il che potrebbe richiedere anche sessant’anni o più), avrebbe una sua serie di problemi da superare. Tuttavia, se vogliamo seriamente fermare le emissioni di carbonio con la tecnologia disponibile, dobbiamo considerare gli LFTR. Possiamo etichettare qualsiasi tecnologia non rinnovabile come blasfema continuando nel frattempo a emettere carbonio. Ma possiamo anche avanzare con tecnologie non testate e ad alta ricompensa che potrebbero essere una parte enorme della soluzione al più urgente problema globale che gli esseri umani abbiano mai creato.
Ci interessa di più attenerci alla nostra ideologia piuttosto che implementare le migliori opzioni disponibili per ridurre le emissioni di carbonio? Temo sia la prima. Spero di sbagliarmi.